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Abstract

This funded research explored language-based methods for enforcing accountability in web
applications. Web applications are an important target for improving security because they are
so widely used and are also very vulnerable. Better technology is needed for building web
applications that are secure and that use information securely and accountably.

To enforce accountability of information in web applications, it is necessary to track and
control information flows. Information flow control ensures that information affected by some
source can be attributed to that source. This research explored new ways to control infor-
mation flow in web applications by extending prior work on the Jif programming language.
Language-based methods have the advantage that they can track information flow precisely,
with fine granularity and low overhead. Jif combines compile-time and run-time methods to
control information flow, enforcing confidentiality and integrity policies. Several technical in-
novations made it possible to apply language-based information flow control in every tier of a
web application: at the application server (in the SIF system), at the web browser (in the Swift
system), and in the persistent store (in the Fabric system). Each of these new systems provides
strong, end-to-end enforcement of policies that can be used to ensure accountability.

Several peer-reviewed publications were produced, some appearing in highly competitive
publication venues. In addition, most of the software produced under the auspices of this
project, including the SIF and Swift systems, has been publicly released, along with manuals
and tutorials explaining how to use them to build web applications.
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1 Introduction
Web applications are now used for a wide range of important activities: email, social networking,
on-line shopping and auctions, financial management, and many more. They provide services
to millions of users and store information about and for them. However, a web application may
contain design or implementation vulnerabilities that compromise the confidentiality, integrity, or
availability of information manipulated by the application, with financial, legal, or ethical impli-
cations. According to a recent report [20], web applications account for 69% of Internet vulner-
abilities. Prior techniques appear inadequate to prevent these vulnerabilities; better technology
is needed for building web applications that are secure and that use information securely and
accountably.

To enforce accountability of information, it is necessary to track and control how information
flows through the system. Information flow control ensures that information affected by some
source can be attributed to that source regardless of how indirect the effect is. Language-based
methods can track information flow precisely, with fine granularity and low overhead.

In fact, information security vulnerabilities arise in general from inappropriate information de-
pendencies, so tracking information flows within applications offers a comprehensive solution to
security and accountability. Confidentiality can be enforced by controlling information flow from
sensitive data to clients; integrity and accountability can be enforced by controlling information
flow from clients to trusted information—as a side effect, protecting against common vulnerabili-
ties like SQL injection and cross-site scripting. In fact, recent work [9, 12, 22, 10] on static analysis
of web applications written in Java or PHP has used dependency analyses to find many vulnera-
bilities in existing web applications and web application libraries.

We have taken a language-based approach in which a compiler statically verifies the security
of information flow. An alternative approach is to use purely dynamic tainting, which can detect
some improper dependencies and has also proved useful in detecting vulnerabilities [24, 3]. How-
ever, static analyses have the advantage that they can conservatively identify information flows,
including information flows through control flow, providing stronger security assurance [17]. In
addition, our language-based approach is powerful enough that it can also track information flow
dynamically when necessary.

Building applications that handle information securely is difficult. Analyzing the security of
an application or system requires some assessment of whether the information used by the system
is trustworthy, and to what degree. Without this assessment, trusted outputs of the system might
be influenced by insufficiently trustworthy inputs or by the actions of insufficiently trustworthy
agents. This assessment may be done as part of a validation process performed before the appli-
cation is deployed; it may be also important to assess trustworthiness of information in running
systems, because the provenance of information may inform decisions made using it.

1.1 The SIF web servlet architecture

Our first effort toward applying information flow controls to web applications was the Servlet
Information Flow (SIF) servlet architecture [2]. This is a novel system for building high-assurance
web applications. Assurance is provided by controlling information flow at the server side. Be-
cause all information provided to the web client is labeled with confidentiality and integrity, SIF
exposes these security requirements automatically as part of the client-side user interface. Infor-
mation flow analysis is known to be useful against attacks such as SQL injection and cross-site
scripting, but SIF prevents inappropriate use of information more generally: flow of confidential
information to clients is controlled, as is flow of low-integrity information from clients. Expressive
policies allow users and application providers to protect information from each other.
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SIF web applications are written in an extended version of the Jif (Java + information flow)
programming language [13, 14], which itself extends Java with information-flow control. The
enforcement mechanisms of SIF and Jif track the flow of information within a web application,
and information sent to and returned from the client. SIF reduces the trust that must be placed
in web applications, in exchange for trust in the servlet framework and the Jif compiler—a good
bargain because the framework and compiler are shared by all SIF applications.

Language-based information flow promises cheap, strong information security. But until now,
it could not effectively enforce information security in highly dynamic applications. To build SIF,
we developed new language features that make it possible to write realistic web applications.
Increased assurance is obtained with modest enforcement overhead.

1.2 Automatically partitioning web applications in Swift

Recent trends in web application design have exacerbated the security problem. To provide a rich,
responsive user interface, application functionality is pushed into client-side JavaScript [6] code
that executes within the web browser. JavaScript code is able to manipulate user interface com-
ponents and can store information persistently on the client side by encoding it as cookies. These
web applications are distributed applications, in which client- and server-side code exchange pro-
tocol messages represented as HTTP requests and responses. In addition, most browsers allow
JavaScript code to issue its own HTTP requests, a functionality used in the Ajax (Asynchronous
JavaScript and XML) development approach. Moving code and data to the client can create secu-
rity vulnerabilities, but currently there are no good methods for deciding when it is secure to do
so.

Swift is a new, principled approach to building web applications that are secure by construc-
tion. It automatically partitions application code while providing assurance that the resulting
placement is secure and efficient. Application code is written as Java-like code annotated with
information flow policies that specify the confidentiality and integrity of web application infor-
mation. The compiler uses these policies to automatically partition the program into JavaScript
code running in the browser, and Java code running on the server. To improve interactive perfor-
mance, code and data are placed on the client side. However, security-critical code and data are
always placed on the server. Code and data can also be replicated across the client and server, to
obtain both security and performance. A max-flow algorithm is used to place code and data in a
way that minimizes client–server communication.

The Swift prototype system has been released publicly and has been downloaded hundreds of
time. A tutorial for programming in Swift has been developed. We have made it available on the
Swift web site.

1.3 The Fabric secure persistent object store

SIF and Swift ensure that information flows are secure and that provenance of information is
tracked via integrity policies. However, they do not handle information flows that pass through
persistent storage. It is possible to use a Structured Query Language (SQL) database to store data
persistently, as we have done with SIF and Swift applications. However, the application developer
must manually reconstruct the security policies of information obtained from the database.

To address this lack, we developed Fabric, a secure persistent object store that allows dis-
tributed web applications to access persistent information securely in the form of objects. By build-
ing on top of Jif, the high-level programming language makes distribution and persistence largely
transparent to programmers, while enforcing information flow policies on persistent objects. Fab-
ric supports data-shipping and function-shipping styles of computation: both computation and
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information can move between nodes to meet security requirements or to improve performance.
Where current web applications might be structured to use queries, web applications based on
Fabric can use remote computation.

Fabric provides a rich, Java-like object model, but data resources are labeled with confiden-
tiality and integrity policies that are enforced through a combination of compile-time and run-
time mechanisms. Optimistic, nested transactions ensure consistency across all objects and nodes.
A peer-to-peer dissemination layer helps to increase availability and to balance load. Results
from applications built using Fabric, include SIF-based web applications, suggest that Fabric has
a clean, concise programming model, offers good performance, and enforces security.

2 Technical description
We now explore some of the technical innovations behind the SIF, Swift, and Fabric systems.

2.1 Automatic security parameter inference

To support programming in SIF, Swift, and Fabric, we developed a major extension to the Jif
programming language, which supports automatic inference of many security annotations that
previously were required. The motivation for this work is that even though Jif did already au-
tomatically infer most security annotations, the annotation burden was still too high, especially
for the kind of code that appears in web applications. Our goal was to significantly reduce the
annotation burden of building SIF applications.

Previously to this extension, it was typically necessary to supply security policy annotations
when creating objects. For example, suppose that one wants to create a linked list of objects that
are owned by Alice and readable by Bob. In Jif, it was previously necessary to add that annota-
tion explicitly:

LinkedList[{Alice:Bob}] list = new LinkedList[{Alice:Bob}]();

With the new label inference mechanism, programmers can now write many fewer annota-
tions. In this example, programmers can write the same expression they would in Java:

LinkedList list = new LinkedList();

The Jif compiler understands that the class LinkedList must be instantiated on a policy, and it
automatically solves for that policy to determine that it can be {Alice:Bob}.

Inferring type parameters was a significant extension to the compiler. It is a kind of type
inference that programming languages known for good type inference, such as ML, in fact do
not do. One reason why parameter inference is usually avoided is that it can require expensive
whole-program analyses that encourage brittle programs in which a small change to program can
break faraway code. By contrast, the parameter inference features we added to Jif require only
local analysis of method code. It is still necessary to annotate method signatures, but not the uses
of classes parameterized on labels. We think this is constitutes a good “sweet spot” where the
annotation burden is lessened without losing the good properties of the original Jif type inference
algorithm.

2.2 Redesigning servlet containers for information flow

One of the challenges of the SIF project was how to design a web application servlet container to
securely track information flow. We developed the architecture depicted in Figure 1.
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Figure 1: Handling a request in SIF.

The figure shows how an HTTP request is handled by SIF and the interaction with servlet code
written in Jif.

1. An HTTP request is made from a web client to a servlet;
2. The HTTP request is wrapped in a Request object;
3. An appropriate Action object of the servlet is found to handle the request, and its invoke

method called with the Request object;
4. The action’s invoke method generates a Page object to return for the request;
5. The Page object is converted into HTML, which is returned to the client.

2.3 Tracking information flow through a graphical user interface

Another significant challenge posed by both the SIF and Swift frameworks was how to track in-
formation flow through a complex graphical user interface. This required developing a set of
graphical user interface classes in which the possible information flows are described through
type-level annotations.

These signatures make extensive use of powerful features of Jif. Classes representing HTML
nodes are parameterized with respect to In and Out labels that constrain how information can
flow through the tree of HTML widgets. The signatures make extensive use of dynamic labels [27]
and dynamic principals [21], and many methods have where clauses that constrain labels and
principals at compile time in complex ways.

While these features are complex, the payoff is that information flows are checked almost
entirely at compile time. This means that the overhead of checking information flows is low,
despite the richness of the security policy language. Further, it means that run-time failures do
not happen, in contrast to purely dynamic taint-tracking schemes, where a bad information can
cause the application to behave in unexpected (though secure) ways.

2.4 Application-defined principals

Principals are entities with security concerns. Applications may choose which entities to model
as principals. Principals in Jif are represented at run time, and thus can be used as values by
programs during execution. Jif gives run-time principals the primitive type principal. SIF
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Figure 2: The Swift architecture

introduced an open-ended mechanism that allows applications great flexibility in defining and
implementing their own principals.

Applications may implement the interface jif.lang.Principal. Any object that imple-
ments the Principal interface is a principal; it can be cast to the primitive type principal,
and used just as any other principal. The Principal interface provides methods for principals
to delegate their authority and to define authentication.

Delegation is crucial. For example, user principals must be able to delegate their authority to
session principals, so that requests from users can be executed with their authority. The method
call p.delegatesTo(q) returns true if and only if principal p delegates its authority to prin-
cipal q. The implementation of a principal’s delegatesTo method is the sole determiner of
whether its authority is delegated. An acts-for proof is a sequence of principals p1, . . . , pn, such that
each pi delegates its authority to pi+1, and is thus a proof that pn can act for p1. Acts-for proofs are
found using the methods findProofUpTo and findProofDownTo on the Principal interface,
allowing an application to efficiently guide a proof search. Once an acts-for proof is found, it is
verified using delegatesTo, cleanly separating proof search from proof verification.

The authority of principals is required for certain operations. For example, the authority of
the principal Alice is required to downgrade information labeled {Alice → Bob ; >← >} to the
label {Alice→Bob,Chuck ; >←>} since a policy owned by Alice is weakened. The authority of
principals whose identity is known at compile time may be obtained by these principals approving
the code that exercises their authority. However, for dynamic principals, whose identity is not
known at compile time, a different mechanism is required. We extended Jif with a mechanism for
dynamically authorizing closures.
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2.5 Automatic policy-driven partitioning of web applications

The Swift system that we developed makes it possible to write applications that are secure by con-
struction. Applications are written in a higher-level programming language in which information
security requirements are explicitly exposed as declarative annotations. The compiler uses these
security annotations to decide where code and data in the system can be placed securely, on the
web server as Java or on the client browser as JavaScript. Code and data are partitioned at fine
granularity, at the level of individual expressions and object fields. Developing programs in this
way ensures that the resulting distributed application protects the confidentiality and integrity
of information. The general enforcement of information integrity also guards against common
vulnerabilities such as SQL injection and cross-site scripting.

Swift applications are not only more secure, they are also easier to write: control and data do
not need to be explicitly transferred between client and server through the awkward extralinguis-
tic mechanism of HTTP requests. Automatic placement has another benefit. In current practice,
the programmer has no help designing the protocol or interfaces by which client and server code
communicate. With Swift, the compiler automatically synthesizes secure, efficient interfaces for
communication.

Of course, others have noticed that web applications are hard to make secure and awkward to
write. Prior research has addressed security and expressiveness separately. One line of work has
tried to make web applications more secure, through analysis [9, 22, 10] or monitoring [8, 15, 23]
of server-side application code. However, this work does not help application developers decide
when code and data can be placed on the client. Conversely, the awkwardness of programming
web applications has motivated a second line of work toward a single, uniform language for
writing distributed web applications [7, 4, 18, 26, 25]. However, this work largely ignores security;
while the programmer controls code placement, nothing ensures the placement is secure.

The architecture of Swift is depicted in Figure 2. The system starts with annotated Java source
code at the top of the diagram. Proceeding from top to bottom, a series of program transformations
converts the code into a partitioned form shown at the bottom, with Java code running on the web
server and JavaScript code running on the client web browser.

Jif source code The source language of the program is an extended version of the Jif 3.0 pro-
gramming language [13, 14]. Jif extends the Java programming language with language-based
mechanisms for information flow control and access control. Information security policies can be
expressed directly within Jif programs, as labels on program variables. By statically checking a
program, the Jif compiler ensures that these labels are consistent with flows of information in the
program.

The original model of Jif security is that if a program passes compile-time static checking,
and the program runs on a trustworthy platform, then the program will enforce the information
security policies expressed as labels. For Swift, we assume that the web server can be trusted,
but the client machine and browser may be buggy or malicious. Therefore, Swift must transform
program code so that the application runs securely, even though it runs partly on the untrusted
client.

WebIL intermediate code The first phase of program transformation converts Jif programs into
code in an intermediate language we call Web Intermediate Language (WebIL). As in Jif, We-
bIL types can include annotations; however, the space of allowed annotations is much simpler,
describing constraints on the possible locations of application code and data. For example, the
annotation S means that the annotated code or data must be placed on the web server. The an-
notation C?S means that it must be placed on the server, and may optionally be replicated on the
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client as well. WebIL is useful for web application programming in its own right, although it does
not provide security assurance.

WebIL optimization The initial WebIL annotations are merely constraints on code and data
placement. The second phase of compilation decides the exact placement and replication of code
and data between the client and server, in accordance with these constraints. The system attempts
to minimize the cost of the placement, in particular by avoiding unnecessary network messages.
The minimization of the partitioning cost is expressed as an integer programming problem, and
maximum flow methods are then used to find a good partitioning.

Splitting code Once code and data placements have been determined, the compiler transforms
the original Java code into two Java programs, one representing server-side computation and the
other, client-side computation. This is a fine-grained transformation. Different statements within
the same method may run variously on the server and the client, and similarly with different
fields of the same object. What appeared as sequential statements in the program source code
may become separate code fragments on the client and server that invoke each other via network
messages. Because control transfers become explicit messages, the transformation to two separate
Java programs is similar to a conversion to continuation-passing style [16, 19].

JavaScript output Although our compiler generates Java code to run on the client, this Java code
actually represents JavaScript code. The Google Web Toolkit (GWT) [7] is used to compile the Java
code down to JavaScript. On the client, this code then uses the GWT run-time library and our
own run-time support. On the server, the Java application code links against Swift’s server-side
run-time library, which in turn sits on top of the standard Java servlet framework.

The final application code generated by the compiler uses an Ajax approach to securely carry
out the application described in the original source code. The application runs as JavaScript on
the client browser, and issues its own HTTP requests to the web server, which responds with XML
(Extensible Markup Language) data.

From the browser’s perspective, the application runs as a single web page, with most user
actions (e.g., clicking on buttons) handled by JavaScript code. This approach seems to be the
current trend in web application design, replacing the older model in which a web application is
associated with many different Uniform Resource Locators (URLs). One result of the change is
that the browser “back” and “forward” buttons no longer have the originally intended effect on
the web application, though this can be largely hidden, as is done in the GWT.

Partitioning and replication Compiling a Swift application puts some code and data onto the
client. Code and data that implement the user interface clearly must reside on the client. Other
code and data are placed on the client to avoid the latency of communicating with the server. With
this approach, the web application can have a rich, highly responsive user interface that waits for
server replies only when security demands that the server be involved.

In order to enforce the security requirements in the Jif source code, information flows between
the client and the server must be strictly controlled. In particular, confidential information must
not be sent to the client, and information received from the client cannot be trusted. The Swift
compilation process generates code that satisfies these constraints.

One novel feature of Swift is its ability to selectively replicate computation onto both the client
and server, improving both responsiveness and security. For example, validation of form inputs
should happen on the client so the user does not have to wait for the server to respond when
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invalid inputs are provided. However, client-side validation should not be trusted, so input vali-
dation must also be done on the server. In current practice, developers write separate validation
code for the client and server, using different languages. This duplicates effort and makes it less
likely that validation is done correctly and consistently. With Swift, the compiler can automati-
cally replicate the same validation code onto both the server and the client. This replication is not
a special-purpose mechanism; it is simply a result of applying a general-purpose algorithm for
optimizing code placement.

2.6 The Fabric secure persistent object store

Web applications use persistent data, and for accountability it is crucial to be able to track the
flow of information through persistent data. The Fabric system supports transparently persistent
objects, and we showed that it could be used with SIF to provide comprehensive information flow
tracking between the web application and the persistent store.

As we developed the Fabric persistence layer, we realized that in a world of distributed, repli-
cated web applications, it was necessary to broaden the scope of this part of the project. Rather
than just an object store, Fabric is a general way to manage persistent objects securely in a dis-
tributed system. Fabric provides a shared computational and storage substrate implemented by
an essentially unbounded number of Internet hosts. As with the Web, there is no notion of an
“instance” of Fabric. Two previously noninteracting sets of Fabric nodes can interact and share in-
formation without prior arrangement. There is no centralized control over admission: new nodes,
even untrustworthy nodes, can join the system freely.

Fabric gives programmers a high-level programming abstraction in which security policies
and some distributed computing features are explicitly visible to the programmer. Programmers
access Fabric objects in a uniform way, even though the objects may be local or remote, persistent
or nonpersistent, and object references may cross between Fabric nodes.

To achieve good performance while enforcing security, Fabric supports both data shipping, in
which data moves to where computation is happening, and function shipping, in which computa-
tions move to where data resides. Data shipping enables Fabric nodes to compute using cached
copies of remote objects, with good performance when the cache is populated. Function ship-
ping enables computations to span multiple nodes. Inconsistency is prevented by performing all
object updates within transactions, which are exposed at the language level. The availability of
information, and scalability of Fabric, are increased by replicating objects within a peer-to-peer
dissemination layer.

2.6.1 Fabric architecture

Fabric nodes take on one of the three roles depicted in Figure 3:

• Storage nodes (or stores) store objects persistently and provide object data when requested.

• Worker nodes perform computation, using both their own objects and possibly copies of ob-
jects from storage nodes or other worker nodes.

• Dissemination nodes provide copies of objects, giving worker nodes lower-latency access and
offloading work from storage nodes.

Although Fabric nodes serve these three distinct roles, a single host machine can have multiple
Fabric nodes on it, typically colocated in the same Java virtual machine. For example, a store can
have a colocated worker, allowing the store to invoke code at the worker with low overhead. This
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Figure 3: Fabric architecture

capability is useful, for example, when a store needs to evaluate a user-defined access control
policy to decide whether an object update is allowed. It also gives the colocated worker the ability
to efficiently execute queries against the store. Similarly, a worker node can be colocated with a
dissemination node, making Fabric more scalable.

Object model Information in Fabric is stored in objects. Fabric objects are similar to Java objects;
they are typically small and can be manipulated directly at the language level. Fabric also has
array objects, to support larger data aggregates. Like Java objects, Fabric objects are mutable and
are equipped with a notion of identity.

Naming Objects are named throughout Fabric by object identifiers (oids). An object identifier has
two parts: a store identifier, which is a fully qualified Domain Name System (DNS) host name,
and a 64-bit object number (onum), which identifies the object on that host. An object identifier
can be transmitted through channels external to Fabric, by writing it as a URL with the form
fab://store/onum, where store is the host name and onum is the object number.

An object identifier is permanent in the sense that it continues to refer to the same object for
the lifetime of that object, and Fabric nodes always can use the identifier to find the object. If an
object moves to a different store, acquiring an additional oid, the original oid still works because
the original store has a surrogate object containing a forwarding pointer. Path compression is used
to prevent long forwarding chains.

Knowing the oid of an object gives the power to name that object, but not the power to access
it: oids are not capabilities [5]. If object names were capabilities, then knowing the name of an
object would confer the power to access any object reachable from it. To prevent covert channels
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that might arise because adversaries can see object identifiers, object numbers are generated by a
cryptographically strong pseudorandom number generator. Therefore, an adversary cannot probe
for the existence of a particular object, and an oid conveys no information other than the name of
the node that persistently stores the object.

Fabric uses DNS to map hostnames to Internet Protocol (IP) addresses, but relies on X.509
certificates to verify the identity of the named hosts and to establish secure Secure Sockets Layer
(SSL) connections to them. Therefore, certificate authorities are the roots of trust and naming, as
in the Web.

Fabric applications can implement their own naming schemes using Fabric objects. For ex-
ample, a naming scheme based on directories and pathnames is easy to implement using a hash
map.

Labels Every object has an associated label that describes the confidentiality and integrity re-
quirements associated with the object’s data. It is used for information flow control and to control
access to the object by Fabric nodes. This label is automatically computed by the Fabric run-time
system based on programmer annotations and a combination of compile-time and run-time infor-
mation flow analysis. Any program accepted by the Fabric type system is guaranteed to pass ac-
cess control checks at stores, unless some revocation of trust has not yet propagated to the worker
running it.

Classes Every Fabric object, including array objects, contains the oid of its class object, a Fabric ob-
ject representing its class in the Fabric language. The class object contains both the fully-qualified
path to its class (which need not be unique across Fabric) and the SHA-256 hash of the class’s byte-
code (which should be globally unique). The class object creates an unforgeable binding between
each object and the correct code for implementing that object. The class object can also include the
actual class bytecode, or the class bytecode can be obtained through an out-of-band mechanism
and then checked against the hash. When objects are received over the network, the actual hash is
verified against the expected one.

Versions Fabric objects can be mutable. Each object has a current version number, which is incre-
mented when a transaction updates the object. The version number distinguishes current and old
versions of objects. If worker nodes try to compute with out-of-date object versions, the trans-
action commit will fail and will be retried with the current versions. The version number is an
information channel with the same confidentiality and integrity as the fields of the object; there-
fore, it is protected by the same mechanisms.

2.6.2 Storage nodes

Storage nodes (stores) persistently store objects and provide copies of object data on request to
both worker nodes and dissemination nodes. Access control prevents nodes from obtaining data
they should not see. When a worker requests a copy of an object from a store, the store examines
the confidentiality part of the object’s label, and provides the object only if the requesting node is
trusted enough to read it. Therefore the object can be sent securely in plaintext between the two
nodes (though it is of course encrypted by SSL). This access control mechanism works by treating
each Fabric node as a principal. Each principal in Fabric keeps track of how much it trusts the
nodes that it interacts with.
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2.6.3 Worker nodes

Workers execute Fabric programs. Fabric programs may be written in the Fabric language. Trusted
Fabric programs—that is, trusted by the worker on which they run—may incorporate code written
in other languages, such as Fabric Intermediate Language (FabIL). However, workers will run
code provided by other nodes only if the code is written in Fabric, and signed by a trusted node.

Fabric programs modify objects only inside transactions, which the Fabric programming lan-
guage exposes to the programmer as a simple atomic construct. Transactions can be nested,
which is important for making code compositional. During transactions, object updates are logged
in an undo/redo log, and are rolled back if the transaction fails either because of inconsistency,
deadlock, or an application-defined failure.

A Fabric program may be run entirely on a single worker that issues requests to stores (or to
dissemination nodes) for objects that it needs. This data-shipping approach makes sense if the cost
of moving data is small compared to the cost of computation, and if the objects’ security policies
permit the worker to compute using them.

When data shipping does not make sense, function shipping may be used instead. Execution
of a Fabric program may be distributed across multiple workers, by using remote method calls to
transfer control to other workers.

One important use of remote calls is to invoke an operation on a worker colocated with a store.
Since a colocated worker has low-cost access to persistent objects, this can improve performance
substantially. This idea is analogous to a conventional application issuing a database query for
low-cost access to persistent data. In Fabric, a remote call to a worker that is colocated with a store
can be used to achieve this goal, with two advantages compared to database queries: the worker
can run arbitrary Fabric code, and information-flow security is enforced.

2.6.4 Update maps for secure distributed computation

Fabric supports shared access to persistent objects from multiple worker nodes. This is important for
implementing web applications, where for throughput, multiple application servers must share
access to the same underlying persistent information. Each app server is a worker node within the
Fabric system. Worker node computations are structured as transactions. Each transaction runs in
isolation from other Fabric transactions, and its side effects are committed atomically.

However, Fabric transactions can be distributed across multiple worker nodes by the use of
remote calls within a transaction. The ability to distribute transactions is crucial for reconciling
expressiveness with security. Although some workers are not trusted enough to read or write
some objects, it is secure for them to perform these updates by calling code on a sufficiently trusted
worker.

For consistency, workers need to see the latest versions of shared objects as they are updated.
For performance, workers should be able to locally cache objects that are shared but not updated.
For security, updates to an object with confidentiality L should not be learned by a worker c unless
the labeling ordering L v {> → c} holds (where c is a principal representing the degree of trust
in the worker node).

These three requirements are reconciled by the use of update maps, which securely propagate
object updates during the transaction. If an object is updated during a distributed transaction, the
node performing the update becomes the object’s writer and stores the definitive version of the
object. If the object already has a writer, it is notified and relinquishes the role (this notification
will not be a covert channel). The change of object writer is also recorded in the update map,
which always resides at the single node that is currently executing in the transaction.
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The update map contains two kinds of mappings. An update to object o at worker w adds
a mapping of the form MD5(oid, key) 7→ enckey(w), where oid is the oid of object o, key is its
encryption key, enc represents symmetric-key encryption, and MD5 represents use of the MD5
message digest algorithm. This mapping permits a worker that is about to read or write o—
and therefore has the encryption key for o—to learn whether there is a corresponding entry in
the update map, and to determine which node is currently the object’s writer. The second kind
of mapping supports object creation. The creation of a new object with oid oid adds an entry
of the form MD5(oid) 7→ oidlabel, where oidlabel is the oid of the object’s label, which contains
the object’s encryption key. This mapping allows a worker to find the encryption key for newly
created objects, and then to check the update map for a mapping of the first kind.

Thus, the update map allows workers to efficiently check for updates to objects they are
caching, without revealing information to workers that are not trusted to learn about updates.

2.6.5 Distributed transaction management

To maintain consistency, transaction management must in general span multiple workers. For
each top-level transaction that a worker is involved in, it maintains transaction logs. These trans-
action logs must be stored on the workers where the logged actions occurred, because in general
the logs may contain confidential information that other workers may not see. Figure 4 illustrates
the log structures that could result in a distributed transaction involving two workers. In the fig-
ure, a transaction (A) starts on worker 1, then starts a nested subtransaction (B), then calls code
on worker 2, which starts another subtransaction (C) there. That code then calls back to worker
1, starting a third subtransaction (D). Conceptually, all the transaction logs together form a single
log that is distributed among the participating workers, as shown on the right-hand side. When D
commits, its log is conceptually merged with the log of C, though no data is actually sent. When
C commits, its log, including the log of D, is conceptually merged with that of B. In actuality, this
causes the log of D to be merged with that of B, but the log for C remains on worker 2. When the
top-level transaction commits, workers 1 and 2 communicate with the stores that have interacted
with, using the logs.
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2.6.6 Hierarchical commit protocol

In general, a transaction may span worker nodes where there is mutual distrust. For example,
consider a transaction that updates objects owned by a bank and other objects owned by an air-
line, perhaps as part of a transaction in which a ticket is purchased (see Figure 5). The bank
and the airline do not necessarily trust each other; nor do they trust the customer purchasing the
ticket. Therefore some computation is run on workers run respectively by the bank and the airline.
When the transaction is to be committed, some updates to persistent objects are recorded on these
different workers.

Because the airline and the bank do not trust the customer, it is necessary for the customer to
find a trusted third party. Otherwise worker calls to update bank and airline data structures will
be rejected because they lack sufficient integrity. As shown in the figure, a third-party broker can
receive requests from the customer, use the Jif endorse mechanism to boost integrity, and then
invoke operations on the bank and airline.

For security, Fabric commits transactions using a hierarchical version of two-phase commit.
The worker initiates commit by contacting all the stores whose objects it has accessed, and all
the other workers to which it has issued remote calls. These other workers then do the same.
This procedure allows all the stores involved in a transaction to be informed about the transaction
commit without relying on the top worker to choose which stores to contact and without revealing
to the top worker which other workers and stores are involved in the transaction—which could
be confidential. The two-phase commit protocol then proceeds as usual except that messages are
passed up and down the call tree rather than directly between a single coordinator and the stores.

Of course, a worker in this tree could be compromised and fail to correctly carry out the pro-
tocol, causing some stores to be updated inconsistently with other stores. However, a worker that
could do this could already have introduced this inconsistency by simply failing to update some
objects or by failing to issue some remote method calls. In our example above, the broker could
cause a ticket to be issued without payment being rendered, but only by violating the trust that
was placed in it by the bank and airline. The customer’s power over the transaction is merely to
prevent it from happening at all, which is permitted.

Because workers act as coordinators, trust is placed in them to remain available, or to imple-
ment timely failure recovery, after the prepare phase of the transaction. Prepared transactions
are timed out and aborted if the coordinator is unresponsive. In the example given, the broker
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can cause inconsistent commits by permanently failing after telling only the airline to commit, in
which case the bank will abort its part of the transaction. Of course, the broker already had that
power. Thus, permanent failure is considered a violation of trust. To help prevent these perma-
nent failures, the coordination of the second phase of the commit protocol could be replicated over
a set of replicas running a consensus algorithm. We leave this refinement to future work.

Computations on workers run transactions optimistically, which means that a transaction can
fail in various ways. The worker has enough information to roll the transaction back safely in
each case. At commit time the system can detect inconsistencies that have arisen because another
worker has updated an object accessed during the transaction. Another possibility is that the
objects read by the transaction are already inconsistent, breaking invariants on which the code
relies. Broken invariants can lead to errors in the execution of the program. Incorrectly computed
results are not an issue because they will be detected and rolled back at commit time. Exceptions
may also result; exceptions also cause transaction failure and rollback. Finally, a computation
might diverge rather than terminate. Fabric handles divergence similarly to deadlocks; it times
and retries transactions that are running too long. On retry, the transaction is given more time
in case it it is genuinely a long-running transaction. By geometrically growing the retry time, the
expected run time is only inflated by a constant factor.

2.6.7 Distributed secure transaction management

One of the challenges of the Fabric layer is how to handle transactions that go bad because they
read inconsistent data. In most cases, this simply causes transaction commit to fail, and the trans-
action to be retried after fetching the latest versions of the stale objects. However, in some cases
there is a danger of a failed transaction causing observable effects, violating consistency and pos-
sibly leaking sensitive information. There are two ways that inconsistency is observable. The first
is a transaction that goes into an infinite loop, and thus never tries to commit. The second way is
a transaction that generates an exception. To our knowledge these problem with optimistic trans-
actions have not been resolved in the past. Our solution to nontermination is to automatically
abort and retry long-running transactions with a geometrically increasing series of timeouts. This
strategy ensures that a correct transaction will eventually complete with only a constant-factor
end-to-end slowdown. To deal with exceptions, we consume all nonfatal exceptions and retry the
transaction. In both cases the objects read by the transaction up to the point of retry can be identi-
fied from the transaction log. Up-to-date versions of the objects are obtained, avoiding falling into
the same inconsistency again.

2.6.8 Type systems for reasoning about locality

Persistent objects pose some new challenges from the standpoint of building reliable, secure sys-
tems. In particular, we want Fabric to prevent deletion of persistent objects, which would violate
integrity guarantees. Therefore, Fabric implements a policy of keeping reachable objects persistent.
This strategy has been used by object-oriented databases in the past, but in the context of Fabric,
it has some weaknesses that we have been addressing by adding new type-level annotations that
capture persistence policies. In the language of ACID (atomicity, consistency, isolation, and durabil-
ity) properties provided by databases, these policies relate to durability. However, language-level
policies for persistence appear to be a completely novel idea.

One classic weakness of persistence-by-reachability is that objects can become persistent ac-
cidentally, using up persistent storage space. In the context of Fabric, where untrusted data can
affect which pointers are created by possibly buggy code, we also need to worry about malicious
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attacks on storage space. We have extended the Jif label model with a new policy language that
controls both accidental and malicious persistence. Accidental persistence is controlled by as-
sociating persistence levels with objects that place bounds on how persistent an object will be;
malicious persistence is controlled by preventing untrusted code from creating strong references
to objects.

We have formalized the new policies and the type system of this simplified language, and have
formalized the security properties that this type system should enforce. We have left integration
of these new persistence policies into the Fabric programming language for future work.

3 Results
3.1 Software prototypes

We have built working prototypes of all the systems described in this report, and evaluated their
performance and usability on a variety of web applications.

We have released a prototype of the SIF (Servlet Information Flow) web application frame-
work, along with prototype versions of various useful applications, including a multi-user shared
calendar and a Cross-Domain Information Sharing (CDIS) email application. Performance evalu-
ation of the SIF framework showed that the performance loss due to run-time checking of labels
and principals was modest, even when compared to a carefully engineered Java-based web appli-
cation [2].

We have also released a prototype of the Swift web application partitioning framework, includ-
ing a variety of different interactive example applications. The Swift prototype comes along with
a tutorial that walks the reader through the construction of a simple web secure web application.
We evaluated the Swift prototype on a variety of web applications, and showed that the compiler
was able to partition web applications in a way that avoided extra network communication and
that minimized latency [1].

A working prototype of the Fabric platform has been developed, incorporating the features
described in this report. We have done a preliminary evaluation of this system, focusing on ex-
pressive power and performance. One important evaluation of Fabric has been to port a 50,000
line course management system (CMS), originally written in Java, to run on top of Fabric. The
performance results are encouraging: the Fabric version of CMS runs several times faster than the
production version that is built using the industry-standard approach of Java 2 Enterprise Edition
(J2EE) Enterprise JavaBeans (EJB) layered over an Microsoft SQL Server or Oracle database—
while offering strong security enforcement [11]. Because Fabric supports serializable transactions,
it is very easy to replicate application servers, scaling up the performance of the web application
without harming security or consistency. We showed that scalability was easily achieved.

The goal of the Fabric persistence layer is to support persistence for Jif-based web applications.
We have integrated the SIF web application framework with Fabric, so that SIF web applications
can now store persistent objects directly into Fabric, while automatically preserving confidentiality
and integrity policies defined by the web application. We also modified the SIF multiuser calendar
application to use Fabric instead of using the less-secure SQL database it was originally designed
for.

3.2 Publications

Work on the following refereed publications was supported by this award:

1. Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C. Myers. Fabric:
A Platform for Secure Distributed Computation and Storage. Proc. ACM Symposium on
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Operating Systems Principles (SOSP). October 2009.

2. Xin Qi and Andrew C. Myers. Sharing classes between families. Proc. ACM Conference on
Programming Language Design and Implementation (PLDI), pp. 281–292, June 2009.

3. Xin Qi and Andrew C. Myers. Masked types for sound object initialization. Proc. ACM
Symposium on Principles of Programming Languages (POPL), January 2009.

4. Stephen Chong and Andrew C. Myers. End-to-end enforcement of erasure and declassifica-
tion. In Proc. 2008 IEEE Computer Security Foundations Symposium, pp. 98–111, June 2008.

5. Lantian Zheng and Andrew C. Myers. Securing nonintrusive web encryption through infor-
mation flow. In Proc. 3rd ACM SIGPLAN Workshop on Programming Languages and Analysis
for Security, pages 125–134, June 2008.

6. Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward a secure
voting system. In Proc. IEEE Symposium on Security and Privacy, pp. 354–368, May 2008.

The following publication was invited to the Communications of the ACM:

7. Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and Xin
Zheng. Building secure web applications with automatic partitioning. Comm. of the ACM,
(2), 2009.

Additional papers supported by this award are in submission to a peer-reviewed conference:

8. Aslan Askarov and Andrew C. Myers. A semantic framework for declassification and en-
dorsement policies. Submitted to 2010 European Symposium on Programming, March 2010.

9. Xin Qi and Andrew C. Myers. Homogeneous family sharing. Submitted to 2010 European
Symposium on Programming, March 2010.

3.3 Presentations

This award supported travel to a number of meetings and presentations related to the research
topic:

1. NICIAR PI meeting, Chicago, Illinois, April 7–9, 2008. Attendees: Myers. Presented a poster
and talk on this project.

2. IEEE Symposium on Security and Privacy. Berkeley, California, May 18–21, 2008. Attendees:
Andrew Myers, Stephen Chong, Michael Clarkson. Presented the paper Civitas: Toward a
secure voting system.

3. STONESOUP software assurance workshop, meeting 1. BWI Airport, May 9, 2008. PI Myers
headed an IARPA study on new approaches for obtaining software assurance in place of
the existing evaluation and certification process. This meeting focused on operating-system-
level mechanisms for security enforcement.
http://www.cs.cornell.edu/andru/stonesoup/. Attendees: Myers.

4. “Guiding distributed systems synthesis with language-based security policies.” Invited
talk, 10th IFIP International Conference on Formal Methods for Open Object-Oriented Dis-
tributed Systems (FMOODS’08). Oslo, Norway, June 4, 2008.
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5. STONESOUP software assurance workshop, meeting 2. Microsoft Research, Redmond,
Washington, June 20, 2008.
http://www.cs.cornell.edu/andru/stonesoup/. Attendees from this project: My-
ers.

6. STONESOUP software assurance workshop, meeting 3. Arlington, Virginia, August 6, 2008.
This meeting focused on producing the final briefing and getting input from DoD and NSA
representatives.
http://www.cs.cornell.edu/andru/stonesoup/. Attendees from this project: My-
ers.

7. STONESOUP final briefing. College Park, MD, October 24, 2008. Attendees from this project:
Myers.
http://www.cs.cornell.edu/andru/stonesoup/. Attendees from this project: My-
ers.

8. ACM Symposium on Principles of Programming Languages (POPL 2009). A premier confer-
ence on programming languages. January 21–23, Hyatt Regency, Savannah, Georgia. Atten-
dees: Xin Qi, Andrew Myers. Presentation: “Masked types for sound object initialization.”

9. 2009 IEEE Security and Privacy Program Committee Meeting. Andrew Myers was the 2009
Program Committee Chair for this annual conference. January 26–27, University of Mary-
land, College Park, Maryland. Attendees: Andrew Myers.

10. IBM PL Day, May 7, Hawthorne, New York. Presented keynote talk on the Fabric secure
persistence layer: “Fabric: a higher-level abstraction for secure distributed programming.”

11. 2009 IEEE Symposium on Security and Privacy. May 18–20, Claremont Resort, Oakland,
California. Andrew Myers was the Program Committee Chair for this annual conference.

12. 2009 ACM Symposium on Operating Systems Principles (SOSP) Program Committee Meet-
ing, June 4, University of Washington, Seattle, Washington.

13. 2009 SOSP Program Committee Workshop, June 5, University of Washington, Seattle, Wash-
ington. Presented a talk on our work on secure voting: “Civitas: a secure remote voting
system”.

14. 2009 ACM Conference on Programming Language Design and Implementation (PLDI). June
16–18, Dublin, Ireland. Xin Qi presented our paper on family sharing for extensibility.

4 Conclusions
This research has explored a new approach to building secure web applications. The unifying idea
is to give the programmer a common, high-level abstraction for programming web applications.
In this abstraction, programmers can express the key security requirements of these applications
declaratively through labels for confidentiality and integrity of information. These labels ensure
accountability by ensuring that security policies must be enforced throughout.

In the Swift system, we showed that programmers could write high-level code for both the
server side and client side of a web application, and a compiler could automatically partition the
code securely and efficiently. This unified the top two tiers of a web application in a common
abstraction that enforced security.
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In the Fabric system, we concentrated on the bottom two tiers of a web application instead.
By running SIF on top of Fabric, we showed that a web application could manage persistent data
objects conveniently, securely, and efficiently. Again, the key was to have a common security
policy framework, based on information flow control, that spanned both tiers of the application.

There is much more that can be done to extend this work. An obvious next step would be
to combine the Fabric and Swift approaches, allowing an entire three-tier web application to be
implemented with single language-level abstraction, while providing distribution, consistency,
persistence, and strong security enforcement. We leave this integration to future work.

Our experience with programming in these various systems suggests that the annotation bur-
den is still relatively high, despite improvements in policy inference that were developed during
the project. Another fruitful direction would be to develop better inference methods and better
support for programmer diagnosis of information flow violations.
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6 List of symbols, abbreviations and acronyms

ACID Atomicity, Consistency, Isolation, Durability

Ajax Asynchronous JavaScript and XML

CMS Course Management System

DNS Domain Name System

CDIS Cross-Domain Information Sharing

GWT Google Web Toolkit

FabIL Fabric Intermediate Language

J2EE Java 2 Enterprise Edition

EJB Enterprise JavaBeans

Jif Java + information flow

JVM Java Virtual Machine

HTTP Hypertext Transfer Protocol

HTML Hypertext Markup Language

IP Internet Protocol

NFS Network File System

oid Object identifier

onum Object number

PHP PHP: Hypertext Processor

SIF Servlet Information Flow

SSL Secure Sockets Layer

SHA Secure Hash Algorithm

SQL Structured Query Language

URL Uniform Resource Locator

WebIL Web Intermediate Language

XML Extensible Markup Language
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